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Abstract

Purpose – To present conversion of the advection upwind splitting method (AUSMþ) from the
conventional density-based and coupled formulation to the pressure-based and segregated
formulation.

Design/methodology/approach – The spatial discretization is done by a finite volume method.
A collocated grid cell-center formulation is used. The pressure-correction procedure is set up in the
usual way for a compressible flow problem. The conventional Rhie-Chow interpolation methodology
for the determination of the transporting velocity, and the conventional central interpolation for the
pressure at the control volume faces, are replaced by AUSMþ definitions.

Findings – The AUSMþ flux definitions are spontaneously well suited for use in a collocated
pressure-correction formulation. The formulation does not require extensions to these flux definitions.
As a consequence, the results of a density-based fully coupled method, are identical to the results of a
pressure-based segregated formulation. The advantage of the pressure-correction method with respect
to the density-based method, is the higher efficiency for low Mach number applications. The
advantage of the AUSMþ flux definition for the transporting velocity with respect to the conventional
Rhie-Chow interpolation, is the improved accuracy in high Mach number flows. As a consequence, the
combination of AUSMþ with a pressure-correction method leads to an algorithm with improved
performance for flows at all Mach numbers.

Originality/value – A new methodology, with obvious advantages, is composed by the combination
of ingredients from an existing spatial discretization method (AUSMþ) and an existing time stepping
method (pressure-correction).
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Paper type Research paper

1. Introduction
Originally, density-based methods, which use a coupled solution technique, were
designed to handle high Mach number flows. On the other hand, segregated
pressure-based algorithms like the pressure-correction method (Patankar, 1980) were
developed for the incompressible and low Mach number regime. However, several
applications – a cavitating flow is one example (Senocak and Shyy, 2002; Edwards
et al., 2000) – require algorithms that can handle a very broad Mach number range.

In order to obtain Mach-uniform algorithms, density-based methods have been
extended towards the low Mach number limit by preconditioning. This means that the
time derivative is changed such that the low Mach number stiffness problems is
remedied. In addition, the flux definitions are adapted to scale them properly when
the Mach number diminishes (Weiss and Smith, 1995; Edwards and Liou, 1998;
Vierendeels et al., 2001; Luo and Baum, 2003).

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0961-5539.htm

HFF
16,6

718

Received December 2004
Revised August 2005
Accepted October 2005

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 16 No. 6, 2006
pp. 718-739
q Emerald Group Publishing Limited
0961-5539
DOI 10.1108/09615530610679075



Besides that, pressure-based methods were extended to cope with high Mach
numbers (Merkle et al., 1992; Demirdžić et al., 1993; Lien and Leschziner, 1994; Lien et al.,
1996; Batten et al., 1996; Issa and Javareshhkian, 1998; Moukalled and Darwish, 2001;
Shyy et al., 1997; Bijl and Wesselling, 1998; Wenneker et al., 2002; Van der Heul et al.,
2003). For that purpose, the pressure should act both on the velocity and the density
(Moukalled and Darwish, 2001). Therefore, density too has to be corrected, resulting in a
more complicated pressure-correction equation. In the incompressible and low Mach
number regime, special measures have to be taken to ensure pressure-velocity coupling.
A staggered grid can be used (Shyy et al., 1997; Bijl and Wesselling, 1998; Wenneker et al.,
2002; Van der Heul et al., 2003), or a collocated arrangement in combination with a special
interpolation technique, called the Rhie-Chow interpolation (Rhie and Chow, 1982; Perić
et al., 1988). Because of its flexibility, we choose the collocated storage of variables.
However, we demonstrate that the Rhie-Chow procedure gives bad results if large
pressure gradients occur. It is for that reason that we propose an alternative approach,
based on the advection upstream splitting method (AUSMþ) (Liou and Steffen, 1993;
Liou, 2000) flux definitions. Doing so, we achieve the extension of a popular numerical
algorithm from a density-based to a pressure-based formulation.

2. Governing equations
A one-dimensional non-viscous flow in a tube with a variable section S(x) is considered.
The Euler equations governing this type of flow are the continuity, momentum and
energy equation:
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where r, u, p and E, respectively, represent the density, velocity, pressure and total
energy. The mass flux is defined as _m ¼ ru: The equation of state for an ideal gas
completes the system of equations:

r ¼
p

RT
; ð4Þ

where R is the gas constant and T is the temperature.
The equations are nondimensionalized by choosing three reference quantities, pr, Tr

and Lr. From these, the other reference quantities are derived:

rr ¼
pr

RT r
; ð5Þ

ur ¼

ffiffiffiffi
pr

rr

r
; ð6Þ
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tr ¼
Lr

ur
; ð7Þ

Er ¼
pr

rr
: ð8Þ

The extension to two-dimensional flow is straightforward. Results for a
two-dimensional test case are shown in Section 6.2.

3. The discretized set of equations
3.1 Finite volume discretization
The flow domain is subdivided into a finite number of control volumes (CVs) with
length Dx. The boundaries of the domain coincide with CV faces. All the variables are
stored in the CV center (collocated arrangement). A finite volume method and a
backward Euler time integration is used to discretize the equations. This yields:
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with t ¼ Dt/Dx, and Dt the time step.
In the convective parts of (10) and (11), the transported quantity fiþ (1/2) is

upwinded:

ð _mfÞiþð1=2Þ ¼
1

2
½ _miþð1=2ÞðfL þ fRÞ2 j _miþð1=2ÞjðfR 2 fLÞ�; ð12Þ

where f represents u or E in the momentum or energy equation, respectively. Fist
order accuracy is obtained by taking fL ¼ fi and fR ¼ fiþ1. For higher order of
accuracy the L and R values are computed with the Van Leer-k approach:

fL ¼ fi þ
1

4
½ð1 þ kÞðfiþ1 2 fiÞ þ ð1 2 kÞðfi 2 fi21Þ�; ð13Þ

fR ¼ fiþ1 2
1

4
½ð1 þ kÞðfiþ1 2 fiÞ þ ð1 2 kÞðfiþ2 2 fiþ1Þ�: ð14Þ

For k ¼ 1/3 third order of accuracy is obtained. However, when shocks are present the
minmod-limiter is used:

fL ¼ fi þ
1

2
min modðfiþ1 2 fi;fi 2 fi21Þ; ð15Þ
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fR ¼ fiþ1 2
1

2
min modðfiþ1 2 fi;fiþ2 2 fiþ1Þ: ð16Þ

We obtain the following set of discretized equations:
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and HO the higher order parts of the transported quantities u or E.
This set of highly coupled equations can be solved by means of a coupled solution

technique. However, this involves the solution of a very large system, which is
expensive. Therefore, we propose to solve this set of equations in a segregated way,
namely through a pressure-correction method.

In the mass flux _miþð1=2Þ; the density is upwinded according to the sign of the
transporting velocity uiþ (1/2). The discretization of the cell face velocity uiþ (1/2) and the
cell face pressure piþ (1/2) yet still has to be specified. In a classical incompressible
pressure-correction method, the pressure gradient is discretized centrally. For the cell
face velocity a special interpolation technique is used, namely the Rhie-Chow
interpolation (Rhie and Chow, 1982; Perić et al., 1988). However, as we will show later,
this interpolation cannot be used for a compressible flow simulation. Therefore, we
replace it by AUSMþ (Liou and Steffen, 1993; Liou, 2000), which is commonly used in
coupled algorithms. We will show in what way it differs from the classical Rhie-Chow
interpolation, and how it leads to much better results.

Remark that an AUSMþ definition fits perfectly in the pressure-based context, due
to the separate treatment of convective and acoustic parts. The latter corresponds
completely with the philosophy of a pressure-based method, as was also noticed by
Venkateswaran and Merkle (1997). Other flux definitions, like flux-difference splittings
(Hirsch, 1990) do not apply this separate treatment, and are, therefore, less suitable to
be used in a pressure-based algorithm (Issa and Javareshhkian (1998) did it anyhow).
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3.2 Cell face velocity and pressure
We present now how the cell face velocity uiþ (1/2) and pressure piþ (1/2) are interpolated,
both in the classical approach and with the AUSMþ definitions. In Section 4 we will
explain in which steps these definitions are introduced into the algorithm.

3.2.1 Classical approach: the Rhie-Chow interpolation. In an incompressible flow
simulation on a collocated grid, a central discretization of the pressure gradient leads to
pressure-velocity decoupling, resulting in odd-even oscillations. This problem can be
remedied by a so-called Rhie-Chow interpolation for the cell face velocity uiþ (1/2)

(Rhie and Chow, 1982; Perić et al., 1988). We shortly describe how it works.
From the momentum equation (18) an expression for unþ1

i is derived:
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Similarly, an expression for unþ1
iþ1 is determined:
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The cell face velocity unþ1
iþð1=2Þ is calculated as the average of these two expressions.
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The important feature of this expression is that the cell face velocity depends on the
pressure values at the two neighbor nodes, which is also the basis of the staggering
principle (Perić et al., 1988). With:
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Equation (25) can also be written as:
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Thus, the Rhie-Chow interpolation introduces a pressure smoothing term into
the momentum equations. It is instructive to note that, with the assumption Ai;i ¼
Aiþ1;iþ1 ¼ Aiþð1=2Þ; the pressure smoothing term that is added to the linear
interpolation turns out to be:

1

4A
ð piþ2 2 3piþ1 þ 3pi 2 pi21Þ; ð28Þ

which is in essence a third-order dissipation term. Since the face velocity unþ1
iþð1=2Þ enters

the convective flux of the momentum equation, the Rhie-Chow interpolation introduces
a fourth-order smoothing term into the momentum equation, even if ›p/›x
is approximated by central differencing (Lien et al., 1996; Davidson, 1996).

Thus, in the classical approach,unþ1
iþð1=2Þ is discretized with the interpolation formula (27).
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3.2.2 AUSMþ. In the advection upwind splitting method (AUSMþ), the cell face
velocity uiþ (1/2) is determined by a Mach-dependent interpolation:
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with an appropriate definition for the common speed of sound a(1/2) (Liou, 1996), and:
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Also for the cell face pressure piþ (1/2) a Mach-dependent interpolation is defined:
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In the RHS of the energy equation (19), the pressure is upwinded, so that rH ¼ rE þ p
is upwinded:
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and uiþð1=2Þ is calculated with the AUSMþ definition (29). The L and R values are
determined with (13 and 14) or (15 and 16).

For low Mach number flow, special measures have to be taken with regard to the
scaling of the flux and to ensure pressure-velocity coupling.

3.2.2.1 Scaling. The diffusive contributions in the AUSMþ fluxes scale badly when
the Mach number diminishes (Edwards and Liou, 1998). Edwards and Liou remedy
this problem by introducing preconditioned Mach numbers and a preconditioned speed
of sound:
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Mref equals the local Mach number in subsonic flow. In supersonic regions it is given
the constant value 1. The 1/2 notation indicates the evaluation using simple arithmetic
averages. The new definitions of the left- and right-state Mach numbers:
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and the new definition for ~a1=2 (equation (38)) replace the conventional definitions in
both the convective and pressure components of the interface flux.

This scaling problem is purely a problem of the flux definition, it has nothing to do
with the solution technique. Thus, it also occurs when we apply AUSMþ in the
pressure-correction method. Therefore, we use the AUSMþ in its preconditioned
version.

3.2.2.2 Pressure-velocity coupling. A second problem is the lack of pressure-velocity
coupling in the low Mach number regime. From (32) and (35) it can be seen that for low
Mach numbers, the AUSMþ definitions behave like central discretizations, resulting in
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odd-even oscillations. In fact, it was just to prevent the latter, that the pressure
smoothing term was introduced by the Rhie-Chow interpolation. Edwards and Liou
(1998) introduce the pressure-velocity coupling by adding a pressure diffusion
component to the AUSMþ definition of the mass flux:

_miþð1=2Þ ¼ _miþð1=2ÞAUSMþ þ ~a1=2
1

M 2
refð1=2Þ

2 1

 !
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ð4Þð
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ð1Þð

�MRÞ
h i

£
ð pL 2 pRÞ

ð pL=rLÞ þ ð pR=rRÞ
:

ð42Þ

Notice that in sonic and supersonic regions Mref equals one, so that the pressure
diffusion term vanishes.

4. Pressure-correction algorithm
The solution of the set (17)-(19) is obtained in a segregated manner, through the
SIMPLE approach (Patankar and Spalding, 1972). The known, old time level is denoted
as n. The unknown, new time level is n þ 1. To determine the state at the new time
level n þ 1, several iteration steps are taken within one time step. In a certain iteration
step, we consider an iteration level k and k þ 1. The state at level k is known from the
previous iteration step. In the first iteration step, it is initialized by the level n values.
The state at level k þ 1 is to be determined. After a certain number of iteration steps, a
good approximation for the state at n þ 1 is obtained. Every single iteration steps
consists of a predictor and a corrector step. The different levels in the procedure are
summarized underneath:

..

.

time level n

time level nþ 1

..

.

iteration step k

iteration step kþ 1
predictor

corrector

(

..

.

8>>>>>>>>>><
>>>>>>>>>>:

..

.

4.1 Predictor step
First, a predictor step is taken by means of the momentum equation (18) and the energy
equation (19). The mass fluxes _miþð1=2Þ and density ri in the coefficients A are put at the
known iteration level k. Also the pressure, the (pu)-terms and the HO-terms in the RHS
are written at level k. Predictor values u*i and E*i are obtained from:
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The mass fluxes _mk
iþð1=2Þ are known from the previous iteration step. They are not

interpolated at this point of the procedure. The way to calculate pkiþð1=2Þ and puð Þkiþð1=2Þ
depends on the considered approach. In the classical approach, they are calculated as:

pkiþð1=2Þ ¼
pki þ pkiþ1
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2

and puð Þkiþð1=2Þ ¼
puð Þki þ puð ÞKiþ1
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:

In the AUSM approach they are Mach-dependently interpolated from level k values
with (29) and (34).

From the predictor values u*i and E*i ; a predictor value for the temperature is
determined:

T*i ¼
g2 1

R
E*i 2

1

2
u*i

� �2
� 	

; ð45Þ

where g is the specific heat ratio.
Thus, after the predictor step, an intermediate state ð pk; u*;T*Þ is obtained. The

temperature is updated by this value, i.e.:

Tkþ1
i ¼ T*i : ð46Þ

4.2 Corrector step
As in the incompressible pressure-correction method, the continuity equation is
considered as a constraint instead of being advanced in time:

rkþ1
i 2 rni

t
þ

1

Si

_mSð Þ
kþ1
iþð1=2Þ 2 _mSð Þ

kþ1
i2ð1=2Þ

h i
¼ 0: ð47Þ

Corrections with regard to the intermediate state * are defined:

p0 ¼ pkþ1 2 pk; ð48Þ

u0 ¼ ukþ1 2 u*: ð49Þ

In the compressible case, the density too has to be corrected:

r0 ¼ r kþ1 2 r*; ð50Þ

with:
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r* ¼
pk

RT*
: ð51Þ

This will result in a more complicated pressure-correction equation than in the
incompressible case; the character is altered from pure diffusive to mixed
convective-diffusive (Senocak and Shyy, 2002). To derive this pressure-correction
equation, the mass flux in the continuity equation (47) is expanded as:

_mkþ1
iþð1=2Þ ¼ _m*

iþð1=2Þ þ r0iþð1=2Þu
*
iþð1=2Þ þ r*

iþð1=2Þu
0
iþð1=2Þ: ð52Þ

Since the density is the transported quantity in the continuity equation, it is upwinded:

_m*
iþð1=2Þ ¼

1

2
u*
iþð1=2Þ r*L þ r*R

� �
2 u*

iþð1=2Þ

��� ��� r*R 2 r*L

� �h i
: ð53Þ

In the last term of equation (52), r*
iþð1=2Þ is also upwinded according to the sign of

u*iþð1=2Þ: Notice that the latter does not affect the accuracy of the final solution, since
corrections become zero when convergence is reached (Issa and Javareshhkian, 1998).
The way to calculate u*

iþð1=2Þ depends on the considered approach. In the classical
approach, the Rhie-Chow interpolation formula (27) is used, with values at the
intermediate state ðu*; pkÞ: In the AUSM approach, we use (29).

4.2.1 Density correction. The density corrections are upwinded:

r0iþð1=2Þu
*
iþð1=2Þ ¼

1

2
u*
iþð1=2Þðr

0
i þ r0iþ1Þ2 u*

iþð1=2Þ

��� ���ðr0iþ1 þ r0iÞ
h i

; ð54Þ

where only the first order part is corrected. They are related to the pressure
corrections by:

r0 ¼
›r

›p

����*
T¼cte

· r0 ; C*rp
0: ð55Þ

The coefficient Cr is determined from the equation of state (4):

C*r ¼
1

RT*
: ð56Þ

Again, the value of Cr will not affect the final solution because of its multiplication
with a correction.

4.2.2 Velocity correction. A relation between the velocity corrections u0iþð1=2Þ
and pressure corrections p0i follows from the momentum equation. We write
equation (18) as:

Ak
i;iþ1u

*
iþ1 þ Ak

i;iu
kþ1
i þ Ak

i;i21u
*
i21 ¼ 2

›r

›x

����kþ1

i

Dxþ
ru
� �n

i

t
þ HOu;k

i : ð57Þ

By subtracting the predictor equation (43), we obtain:

u0i ¼ 2
1

Ak
i;i

›p0

›x

����
i

Dx: ð58Þ
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A similar expression can be derived for u0iþ1: Taking the average of these two
expressions, and contracting the pressure gradients, gives:

u0iþð1=2Þ ¼ 2
1

Ak
iþð1=2Þ

ð p0iþ1 2 p0iÞ: ð59Þ

4.2.3 Pressure correction. By substitution of the former into the discretized continuity
equation (47), the following pressure-correction equation is obtained:

B*i;iþ1p
0
iþ1þB*i;ip

0
iþB*i;i21p

0
i21 ¼2

rki þrni
t

þ
Siþð1=2Þ

Si

_m*
iþð1=2Þ2

Si2ð1=2Þ

Si

_m*
i2ð1=2Þ


 �
; ð60Þ

with:

B*i;iþ1 ¼
Siþð1=2Þ

Si

C*r;iþ1

1

2
u*
iþð1=2Þ 2 u*

iþð1=2Þ

��� ���� �
2

r*
iþð1=2Þ

Ak
iþð1=2Þ

" #
; ð61Þ

B*i;i ¼
C*r;i

t
þ

Siþð1=2Þ

Si

C*r;i
1

2
u*
iþð1=2Þ þ u*

iþð1=2Þ

��� ���� �
þ

r*
iþð1=2Þ

Ak
iþð1=2Þ

" #

2
Si2ð1=2Þ

Si

C*r;i
1

2
u*
i2ð1=2Þ 2 u*

i2ð1=2Þ

��� ���� �
þ

r*i2ð1=2Þ

Ak
i2ð1=2Þ

" #
;

ð62Þ

B*i;i21 ¼
Si2ð1=2Þ

Si

C*r;i21

1

2
u*
i2ð1=2Þ þ u*

i2ð1=2Þ

��� ���� �
þ

r*
i2ð1=2Þ

Ak
i2ð1=2Þ

" #
: ð63Þ

This set of equations is solved for the pressure corrections p0i:

4.3 Updates
The pressure is updated as:

pkþ1
i ¼ pki þ p0i ð64Þ

Equation (55) gives the density corrections r0i The density is updated as:

rkþ1
i ¼ r*i þ r0i ð65Þ

Equations (54) and (59) give the density corrections r0iþð1=2Þ and the velocity

corrections u0iþð1=2Þ, respectively. From equation (52) the mass flux _mkþ1
iþð1=2Þ is updated.

Its value is used in the next iteration step.
Velocity corrections are calculated with (58). In the classical approach, the pressure

gradient is discretized centrally. In the AUSM approach, the pressure gradient is
written as:
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›p0

›x

����
i

Dx ¼ p0iþð1=2Þ 2 p0i2ð1=2Þ; ð66Þ

and the face values are Mach-dependently interpolated with (34). The velocity is
updated as:

ukþ1
i ¼ u*i þ u0i: ð67Þ

To summarize, we run through the different steps of the algorithm:
. All node values are assumed to be known at the old time level n, and at the

previous iteration level k. Also the mass flux _mk
iþð1=2Þ was calculated in the

previous iteration step.
. The coefficients A k are calculated with (20)-(22). The RHS of equations (43) and

(44) are calculated. In the classical approach pkiþð1=2Þ and puð Þkiþð1=2Þ are
interpolated centrally from level k values. In the AUSM approach they are
calculated with (34) and (36).

. Predictor values u*i and E*i are determined from (43) and (44), respectively. T*i is
calculated with (45), r*i with (51). Ti is updated, (46).

. u*
iþð1=2Þ is calculated. In the classical approach, The Rhie-Chow interpolation (27)

is used. In the AUSM approach, we use (29). r*
iþð1=2Þ is calculated (upwind).

_m*
iþð1=2Þ is calculated with (53). The coefficients B* are calculated with (61)-(63).

. The pressure-correction equation (60) is solved. The pressure is updated, (64).

. Density corrections are determined with (55). The density is updated, (65).

. The mass flux _mk
iþð1=2Þ is updated with (52), (54) and (59).

. Velocity corrections are calculated with (58). The velocity is updated, (67).

. A next iteration step is started unless convergence was reached.

5. Boundary conditions
The boundaries of the computational domain coincide with the cell faces 1 2 1/2 (inlet)
and N þ 1/2 (outlet). The boundary conditions (BCs) are introduced in a way similar to
those presented by Demirdžić et al. (1993). For brevity, we consider only subsonic in
and outlet conditions.

5.1 Inlet conditions
Since the inlet is assumed to be subsonic, one numerical and two physical BCs have to
be imposed. As a numerical BC, a first order extrapolation of the Mach number is
performed; as physical BCs the total pressure p0;in and the total temperature T0;in are
prescribed.

Thus:

M 12ð1=2Þ ¼ M 1; ð68Þ

p0;12ð1=2Þ ¼ p0;in; ð69Þ

T0;12ð1=2Þ ¼ T0;in: ð70Þ
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5.1.1 Finite volume method. The equations (9)-(11) are written for i ¼ 1. Since no
upwinding can be applied at the face 1 2 (1/2), we get the following set of discretized
equations:

rnþ1
1 2 rn1

t
þ

1

S1

_mSð Þ
nþ1
1þð1=2Þ 2 _mSð Þ

nþ1
12ð1=2Þ

h i
¼ 0; ð71Þ

Anþ1
1;2 unþ1

2 þ Anþ1
1;1 unþ1

1 ¼ ð p1þð1=2Þ 2 p12ð1=2ÞÞ
nþ1

þ
S12ð1=2Þ

S1

_mnþ1
12ð1=2Þu

nþ1
12ð1=2Þ þ

ru
� �n

1

t
þ HOu

1 ;
ð72Þ

Anþ1
1;2 Enþ1

2 þ Anþ1
1;1 Enþ1

1 ¼
21

S1
puSð Þ

nþ1
1þð1=2Þ 2 puSð Þ

nþ1
12ð1=2Þ

� �
þ

S12ð1=2Þ

S1

_mnþ1
12ð1=2ÞE

nþ1
12ð1=2Þ þ

rE
� �n

1

t
þ HOE

1 ;

ð73Þ

with:

Anþ1
1;2 ¼ Anþ1

i;iþ1

h i
i¼1

; ð74Þ

Anþ1
1;1 ¼

S1þð1=2Þ

2S1

_mnþ1
1þð1=2Þ þ _mnþ1

1þð1=2Þ

��� ���� �
þ

rnþ1
1

t
: ð75Þ

5.1.2 Inlet face variables. An expression for the transported quantities unþ1
12ð1=2Þ and

Enþ1
12ð1=2Þ is derived from the BCs (68) and (70):

Tnþ1
12ð1=2Þ ¼

T0;in

1 þ ððg2 1Þ=2Þ Mnþ1
1

� �2
; ð76Þ

unþ1
12ð1=2Þ ¼ Mnþ1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRTnþ1

12ð1=2Þ

q
; ð77Þ

Enþ1
12ð1=2Þ ¼

R

g2 1
Tnþ1

12ð1=2Þ þ
1

2
unþ1

12ð1=2Þ

� �2

: ð78Þ

An expression for pnþ1
12ð1=2Þ is derived from the BCs (68) and (69):

pnþ1
12ð1=2Þ ¼

p0;in

1 þ ððg2 1Þ=2Þ Mnþ1
1

� �2
� 	ðg=ðg21ÞÞ

: ð79Þ

In the mass flux _mnþ1
12ð1=2Þ; the density rnþ1

12ð1=2Þ is calculated as:

rnþ1
12ð1=2Þ ¼

p0;in

RT0;in

1

1 þ ððg2 1Þ=2Þ Mnþ1
1

� �2
� 	1=g21

: ð80Þ

The transporting, velocity unþ1
12ð1=2Þ is calculated with (77). Remark that at the face

1 þ (1/2), The Rhie-Chow interpolation formula differs slightly from (27):
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unþ1
1þð1=2Þ ¼

1

2
unþ1

1 þ unþ1
2

� �
þ

1

2

1

Anþ1
1;1

pnþ1
1 þ pnþ1

2

2
2 pnþ1

12ð1=2Þ

� 	
þ

pnþ1
3 2 pnþ1

1

2Anþ1
2;2

" #

2
pnþ1

2 2 pnþ1
1

Anþ1
1þð1=2Þ

 !
:

ð81Þ

5.1.3 Predictor step. The predictor equations for that first node read:

Ak
1;2u

*
2 þ Ak

1;1u
*
1 ¼ 2 pk1þð1=2Þ 2 pk12ð1=2Þ

� �
þ

ru
� �n

1

t
þ HOu;k

1

þ
S12ð1=2Þ

S1

_mk
12ð1=2Þu

k
12ð1=2Þ;

ð82Þ

AK
1;2E

*
2 þ AK

1;1E
*
1 ¼

21

S1
puSð Þ

k
1þð1=2Þ 2 puSð Þ

k
12ð1=2Þ

� �
þ

rE
� �n

1

t
þ HOE;k

1

þ
S12ð1=2Þ

S1

_mk
12ð1=2ÞE

k
12ð1=2Þ;

ð83Þ

where uk12ð1=2Þ; p
k
12ð1=2Þ and Ek

12ð1=2Þ are calculated with (77), (79) and (78), respectively.
As for internal nodes, the mass flux _mk

12ð1=2Þ is assumed to be known from the previous
iteration.

5.1.4 Corrector step. In the continuity equation for the first cell:

rkþ1
1 2 rn1

t
þ

1

S1

_mSð Þ
kþ1
1þð1=2Þ 2 _mSð Þ

kþ1
12ð1=2Þ

h i
¼ 0; ð84Þ

only the velocity is corrected at the inlet face (Demirdžić et al., 1993):

_mkþ1
12ð1=2Þ ¼ r*12ð1=2Þ u*12ð1=2Þ þ u012ð1=2Þ

� �
: ð85Þ

r*12ð1=2Þ is calculated with (80). The velocity correction u012ð1=2Þ is related to the pressure
corrections as:

u012ð1=2Þ ¼
›u

›p

� 	*
12ð1=2Þ

· p012ð1=2Þ ¼
›u

›p

� 	*
12ð1=2Þ

·
1

2
ð3p01 2 p02Þ; ð86Þ

where a linear extrapolation (for a structured grid) was applied for the pressure
correction. The coefficient is written as:

›u

›p

� 	*
12ð1=2Þ

¼
›u12ð1=2Þ

›M1

� 	* ›M 1

›p12ð1=2Þ

� 	*
; ð87Þ

and the two derivatives are calculated using the BCs (77), (76) and (79), respectively.
We get:
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›u12ð1=2Þ

›M 1

� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
gT0;in

arg

s
2M 2

1

ffiffiffiffiffiffiffiffiffiffiffiffi
arg

gT0;in

r
ðg2 1ÞgT0;in

2ðargÞ2
; ð88Þ

arg ¼ 1 þ
ðg2 1Þ

2
M 2

1; ð89Þ

›M 1

›p12ð1=2Þ
¼ 2

1

g

2

g2 1

p0;in

p12ð1=2Þ

� 	ðg21Þ=g

21

" #( )1=2
p0;in

� �ðg21Þ=g

p12ð1=2Þ

� �ð2g21Þ=g
: ð90Þ

By introducing all this into the continuity equation (84), the following
pressure-correction equation is obtained:

B*1;2p
0
2 þ B*1;1p

0
1 ¼ 2

rk1 2 rn1
t

þ
S1þð1=2Þ

S1

_m*
1þð1=2Þ 2

S12ð1=2Þ

S1

_m*
12ð1=2Þ


 �
; ð91Þ

with:

B*1;2 ¼
S1þð1=2Þ

S1
C*r;2

1

2
u*1þð1=2Þ 2 u*1þð1=2Þ

��� ���� �
2

r*1þð1=2Þ

Ak
1þð1=2Þ

" #

þ
S12ð1=2Þ

S1

1

2
r*12ð1=2Þ

›u

›p

� 	*
12ð1=2Þ

" #
;

ð92Þ

B*1;1 ¼
C*r;1

t
þ

S1þð1=2Þ

S1
C*r;1

1

2
u*1þð1=2Þ þ u*1þð1=2Þ

��� ���� �
þ

r*1þð1=2Þ

Ak
1þð1=2Þ

" #

2
S12ð1=2Þ

S1

3

2
r*12ð1=2Þ

›u

›p

� 	*
12ð1=2Þ

" #
:

ð93Þ

5.2 Outlet conditions
As a single physical BC at the outlet face N þ (1/2), the pressure is prescribed:

pNþð1=2Þ ¼ pout: ð94Þ

As numerical BCs, the total pressure and the total temperature are extrapolated:

p0;Nþð1=2Þ ¼ p0;N ¼ pN 1 þ
g2 1

2
M 2

N

� 	ðg=ðg21ÞÞ

; ð95Þ

T0;Nþð1=2Þ ¼ T0;N ¼ TN 1 þ
g2 1

2
M 2

N

� 	
: ð96Þ

From this, all needed variables can be derived:
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MNþð1=2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

g2 1

p0;Nþð1=2Þ

pNþð1=2Þ

� 	ðg21Þ=g

21

" #vuut ; ð97Þ

TNþð1=2Þ ¼
T0;Nþð1=2Þ

1 þ ððg2 1Þ=2ÞÞ MNþð1=2Þ

� �2
; ð98Þ

uNþð1=2Þ ¼ Mnþ1
Nþð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRTNþð1=2Þ

q
; ð99Þ

ENþð1=2Þ ¼
R

g2 1
TNþð1=2Þ þ

1

2
uNþð1=2Þ

� �2
: ð100Þ

The following is similar to what is done at the inlet face, except for the relation between
the velocity corrections and the pressure corrections.

We write equation (59) as:

u0Nþð1=2Þ ¼
21

Ak
N ;N

›p0

›x


 �
Nþð1=2Þ

ex <
21

Ak
N ;N

2 p0Nþð1=2Þ 2 p0N

� �
: ð101Þ

Since the outlet pressure is fixed, we put p0Nþð1=2Þ ¼ 0; so that:

u0Nþð1=2Þ ¼
21

Ak
N ;N

p0N : ð102Þ

6. Results
We consider two test cases: a one dimensional nozzle flow and a two dimensional flow
past a bump in a channel. Both transonic and subsonic conditions are simulated.

6.1 One dimensional nozzle flow
The section of the nozzle varies as:

SðxÞ ¼

S0; 0 # x # 2L=28

S0 0:9 þ 0:1 2 x2ð11L=28Þ
9L=28

� �2
2

x2ð11L=28Þ
9L=28

� �4

 �� 


; 2L=28 # x # 20L=28

S0; 20L=28 # x # L

8>>>><
>>>>:

The non-dimensional length L is 10, and the number of cells is taken 100. The nodes are
spaced uniformly.

For compressible flows, it is desirable to have a reasonable guess of the initial
pressure and velocity distributions (Demirdžić et al., 1993). We initialize pressure,
velocity and temperature based on the following guesses:

pinit ¼ pout; ð103Þ
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M init ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

g2 1

p0;in

pout

� 	ðg21Þ=g

21

" #vuut ; ð104Þ

T init ¼
T0;in

1 þ ððg2 1Þ=2ÞÞM 2
init

; ð105Þ

uinit ¼ M init

ffiffiffiffiffiffiffiffiffiffiffiffi
gT init

p
: ð106Þ

6.1.1 Transonic flow. We take p0;in ¼ 1 and T0;in ¼ 1: We consider a transonic nozzle
with a normal shock at position 15L/28. Therefore, an outlet pressure pout ¼ 0:718025
has to be imposed.

First, we consider the classical approach, i.e. with Rhie-Chow interpolation and
centrally discretized pressure gradient. No underrelaxation was needed and the
number of iterations within a time step could be taken as unity. Figure 1(a) shows
the Mach number distribution obtained with a first order calculation. Apparently, the
shock is extremely smeared out. This fact was also noticed by Moukalled and Darwish
(2001). They suggested that a high resolution scheme should be used for both the
interface velocities and the interface densities to obtain a sharper shock representation.
In our opinion, however, the smearing is not due to the fact that the scheme is only first
order accurate. Indeed, Figure 1(b) shows the result with the same pressure-correction
procedure, but where the AUSM approach was used. The shock representation is much
sharper, even though the upwinding is still only first order accurate.

The extreme smearing of the shock with the classical pressure-correction method,
finds its cause in the use of the Rhie-Chow interpolation. As was remarked before, this
interpolation introduces a fourth order pressure smoothing term into the momentum
equations. This term becomes excessively large when high-pressure gradients occur.
In addition, this artificial dissipation, originally introduced in the incompressible case
to prevent pressure-velocity decoupling, is not needed anymore when the Mach
number is high enough. Thus, one cannot blindly take over the Rhie-Chow
interpolation from the incompressible algorithms when designing Mach-uniform
methods. However, several examples can be found in the literature where this is done
anyway (Demirdžić et al., 1993; Lien et al., 1996; Moukalled and Darwish, 2001).

Figure 1.
Mach number distribution
for one-dimensional
transonic nozzle flow

HFF
16,6

734



6.1.2 Subsonic flow. Again p0;in and T0;in are equal to one. The outlet pressure pout is
taken 0.9944. Doing so, a throat Mach number of 0.09967 is obtained. Underrelaxation
was needed to be able to converge and several iterations per time step had to be taken.
The fact that underrelaxation is needed in low Mach number flow was also noticed by
other authors (Batten et al., 1996; Issa and Javareshhkian, 1998; Moukalled and
Darwish, 2001).

For low Mach number flow, the classical approach can be used. The AUSM
approach can be used as well, if the afore-mentioned adaptations with regard to scaling
and pressure-velocity coupling are done. Figure 2(a) shows the Mach number
distribution obtained with a first order calculation.

If the preconditioning in the convective fluxes is switched off, the algorithm
becomes unstable. This is also the case when the pressure diffusion term (42) is
removed. After a small number of time steps, when steady state is not yet reached, the
creation of oscillations can be seen (Figure 2(b)).

Edwards and Liou (1998) remark themselves that the form (42) of the interface mass
flux shares a close relationship with the momentum interpolation procedure developed
by Rhie and Chow. This was also noticed by Venkateswaran and Merkle (1997).
However, the essential difference with the Rhie-Chow interpolation is that the
pressure-diffusion term added to the AUSM flux is turned off as the sonic speed is
reached. As a result, it cannot cause excessive smearing of shocks as was the case with
the Rhie-Chow interpolation.

6.2 Flow past a bump in a channel
As a second test case, the two dimensional inviscid flow past a bump in a channel is
taken. Different inlet Mach numbers Min are considered, so that flows ranging from
low Mach subsonic to transonic are obtained. Two different grids are used, a coarse
one and a finer one. Both are stretched. The coarse grid has 48 £ 16 cells, the finer grid
has 96 £ 32 cells. They are shown in Figure 3.

6.2.1 Transonic flow. An inlet Mach number Min ¼ 0.85 gives a transonic flow with
a normal shock. Figure 4 shows the Mach contours obtained with both the classical
Rhie-Chow interpolation and the AUSMþ scheme, for a second order calculation on the
coarse grid (16 £ 48 cells). Clearly, a much sharper shock representation is obtained
when the AUSMþ flux is used.

Figure 2.
Mach number distribution

for one-dimensional
subsonic nozzle flow
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The latter can also be observed from the Figure 5 where the Mach number profiles
along the upper and lower well are shown. Figure 5(a) shows the results for a first order
calculation. The coarse grid results (16 £ 48 cells) again show the sharper shock
representation for the AUSMþ scheme than for the Rhie-Chow interpolation. If the
finer grid (32 £ 96 cells) is used, also the Rhie-Chow interpolation gives a sharper
shock representation. This was also observed in (Demirdžić et al., 1993) and is
obvious, as the dissipation diminishes for smaller grid sizes. Notice that even for the
fine grid calculation, the Rhie-Chow interpolation still gives more smearing than
the AUSMþ calculation on the coarse grid. The same conclusion holds for a second
order calculation (Figure 5(b)). Obviously, the schock representation is sharper than for
the first order calculation. This is the case for all the schemes.

6.2.2 Subsonic flow. As a low subsonic flow example, the case of an inlet Mach
number M in ¼ 1025 is considered. Again, the calculation can be done with the classical
approach or with the AUSM approach including low Mach adaptations. The Mach
number profiles along the walls are shown in Figure 6. The coarse grid (48 £ 16 cells)
was used and k was taken 1/3 (equation (13) and (14)). The results are quasi identical
for each of the methods.

7. Conclusion
We have presented a Mach uniform pressure-correction algorithm, and illustrated its
performance with two test cases for transonic and subsonic flow. In the transonic case,
the classical Rhie-Chow interpolation causes excessive smearing of the shock. With the
use of AUSMþ fluxes, a much sharper shock representation is obtained. For the
subsonic case, special measures have to be taken to keep the fluxes properly scaled and
to prevent pressure-velocity decoupling. In this way, we achieved extension of a
popular numerical algorithm from a density-based and coupled, to a pressure-based
and segregated formulation.

Figure 3.
Grids used for the flow
past a bump in a channel

Figure 4.
Mach number contours,
Min ¼ 0.85
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